摘要翻译:
多决策模型(DMs)的使用可以提高决策的准确性,同时允许用户评估决策的置信度。在本文中,我们探索了多个DM从少量验证数据中学习的能力。当数据样本难以收集和验证时,这就变得很重要。我们提出了一种基于进化的方法来解决这个问题。本文通过少量的数据对所提出的一些临床问题进行了检验。
---
英文标题:
《An Evolutionary-Based Approach to Learning Multiple Decision Models from
Underrepresented Data》
---
作者:
Vitaly Schetinin, Dayou Li, Carsten Maple
---
最新提交年份:
2008
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Neural and Evolutionary Computing 神经与进化计算
分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
涵盖神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。
--
---
英文摘要:
The use of multiple Decision Models (DMs) enables to enhance the accuracy in decisions and at the same time allows users to evaluate the confidence in decision making. In this paper we explore the ability of multiple DMs to learn from a small amount of verified data. This becomes important when data samples are difficult to collect and verify. We propose an evolutionary-based approach to solving this problem. The proposed technique is examined on a few clinical problems presented by a small amount of data.
---
PDF链接:
https://arxiv.org/pdf/0805.3800