摘要翻译:
在大规模多输入多输出系统中,最大的挑战之一是在发射机处获取准确的信道状态信息。为了应对这一挑战,时分双工由于其下行链路和上行链路之间的信道互惠性而更加有利。然而,虽然在空中的传播信道是互易的,但收发器中的射频前端不是互易的。因此,需要校准来补偿射频硬件的不对称性。虽然针对上述问题存在各种空中标定方法,但本文给出了这些算法的统一表示,提供了对标定问题的更高层次的看法,并介绍了标定方法的创新。本文提出了一种新的基于天线分组的标定方法,与现有的标定方法相比,该方法提高了标定精度,加快了标定速度。然后给出了Cram\'er-Rao界作为性能评价基准,并对最大似然估计和最小二乘估计进行了比较。我们还区分了校准测量的相干积累和非相干积累,并指出使非相干积累能够在时间上传播训练,最大限度地减少对数据服务的影响。总之,这些结果对于设计既精确又节省资源的互易校准技术具有特殊价值。
---
英文标题:
《A Framework for Over-the-air Reciprocity Calibration for TDD Massive
MIMO Systems》
---
作者:
Xiwen Jiang, Alexis Decurninge, Kalyana Gopala, Florian Kaltenberger,
Maxime Guillaud, Dirk Slock, and Luc Deneire
---
最新提交年份:
2017
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Information Theory 信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Mathematics 数学
二级分类:Information Theory 信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
---
英文摘要:
One of the biggest challenges in operating massive multiple-input multiple-output systems is the acquisition of accurate channel state information at the transmitter. To take up this challenge, time division duplex is more favorable thanks to its channel reciprocity between downlink and uplink. However, while the propagation channel over the air is reciprocal, the radio-frequency front-ends in the transceivers are not. Therefore, calibration is required to compensate the RF hardware asymmetry. Although various over-the-air calibration methods exist to address the above problem, this paper offers a unified representation of these algorithms, providing a higher level view on the calibration problem, and introduces innovations on calibration methods. We present a novel family of calibration methods, based on antenna grouping, which improve accuracy and speed up the calibration process compared to existing methods. We then provide the Cram\'er-Rao bound as the performance evaluation benchmark and compare maximum likelihood and least squares estimators. We also differentiate between coherent and non-coherent accumulation of calibration measurements, and point out that enabling non-coherent accumulation allows the training to be spread in time, minimizing impact to the data service. Overall, these results have special value in allowing to design reciprocity calibration techniques that are both accurate and resource-effective.
---
PDF链接:
https://arxiv.org/pdf/1710.1083


雷达卡



京公网安备 11010802022788号







