摘要翻译:
需要准确的数字来理解和预测病毒的动态。例如,对传染病期持续时间或家庭二次攻击率的高质量文献值的管理目前尤其紧迫,因为这些数字为如何以及何时封锁或重新开放社会的决定提供了信息。我们的目标是为关键数字提供一个精心策划的来源,帮助我们理解驱动我们当前全球危机的病毒。本简编仅侧重于新冠肺炎流行病学。以摘要格式报告的数字由附注的参考资料证实。对于每一个属性,我们提供了一个简洁的定义,度量和推断方法的描述,以及相关的注意事项。我们希望这份简编将使必要的数字更容易获得,并避免许多新进入该领域的人常见的混淆来源,如用潜伏期来表示和量化潜伏期,或用住院时间来表示感染期。本文件将反复更新,并请社区参与改进。
---
英文标题:
《A quantitative compendium of COVID-19 epidemiology》
---
作者:
Yinon M. Bar-On, Ron Sender, Avi I. Flamholz, Rob Phillips, Ron Milo
---
最新提交年份:
2020
---
分类信息:
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
---
英文摘要:
Accurate numbers are needed to understand and predict viral dynamics. Curation of high-quality literature values for the infectious period duration or household secondary attack rate, for example, is especially pressing currently because these numbers inform decisions about how and when to lockdown or reopen societies. We aim to provide a curated source for the key numbers that help us understand the virus driving our current global crisis. This compendium focuses solely on COVID-19 epidemiology. The numbers reported in summary format are substantiated by annotated references. For each property, we provide a concise definition, description of measurement and inference methods, and associated caveats. We hope this compendium will make essential numbers more accessible and avoid common sources of confusion for the many newcomers to the field such as using the incubation period to denote and quantify the latent period or using the hospitalization duration for the infectiousness period duration. This document will be repeatedly updated and the community is invited to participate in improving it.
---
PDF链接:
https://arxiv.org/pdf/2006.01283