楼主: 何人来此
490 0

[电气工程与系统科学] 行走人体的实时微多普勒特征分解 四肢 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
64.8012
学术水平
1 点
热心指数
6 点
信用等级
0 点
经验
24593 点
帖子
4128
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
何人来此 在职认证  发表于 2022-3-6 12:41:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
人体运动的独特的微多普勒信号($\boldsymbol{\mu}$-d)可以被分析为人体不同部位$\boldsymbol{\mu}$-d信号的叠加。人体肢体符号的实时提取可用于人体运动的检测、分类和跟踪,特别是安全应用。本文将两种方法结合起来模拟行走人体的$\boldsymbol{\mu}$-d签名。在此基础上,提出了一种新的四肢$\mu$-d特征和距离像(也称为微距离($\mu$-r)的时间无关分解的可行性研究。将行走的人体部分分为四类(基、臂、腿、脚),并采用决策树分类器进行分类。通过验证,该分类器能够实时地从行走的人体签名中分解出$\mu$-d的肢体签名。
---
英文标题:
《Real-Time Capable Micro-Doppler Signature Decomposition of Walking Human
  Limbs》
---
作者:
Sherif Abdulatif, Fady Aziz, Bernhard Kleiner, Urs Schneider
---
最新提交年份:
2017
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Computer Vision and Pattern Recognition        计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  Unique micro-Doppler signature ($\boldsymbol{\mu}$-D) of a human body motion can be analyzed as the superposition of different body parts $\boldsymbol{\mu}$-D signatures. Extraction of human limbs $\boldsymbol{\mu}$-D signatures in real-time can be used to detect, classify and track human motion especially for safety application. In this paper, two methods are combined to simulate $\boldsymbol{\mu}$-D signatures of a walking human. Furthermore, a novel limbs $\mu$-D signature time independent decomposition feasibility study is presented based on features as $\mu$-D signatures and range profiles also known as micro-Range ($\mu$-R). Walking human body parts can be divided into four classes (base, arms, legs, feet) and a decision tree classifier is used. Validation is done and the classifier is able to decompose $\mu$-D signatures of limbs from a walking human signature on real-time basis.
---
PDF链接:
https://arxiv.org/pdf/1711.09175
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:多普勒 Applications Optimization Application Recognition 人体 实时 运动 检测 决策树

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-27 02:09