摘要翻译:
设S是局部环a上的标准N^r-分次代数,设M是有限生成的Z^r-分次S-模。我们用某些束上同调模的消失刻划了M的Cohen-Macaulayness。因此,我们将我们的结果应用于研究多Rees模的Cohen-Macaulayness(也称为Rees修正)。我们的工作推广了前人关于多Rees代数的Cohen-Macaulayness的研究。
---
英文标题:
《Cohen-Macaulay multigraded modules》
---
作者:
C-Y. Jean Chan, Christine Cumming, Huy Tai Ha
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let S be a standard N^r-graded algebra over a local ring A, and let M be a finitely generated Z^r-graded S-module. We characterize the Cohen-Macaulayness of M in terms of the vanishing of certain sheaf cohomology modules. As a consequence, we apply our result to study the Cohen-Macaulayness of multi-Rees modules (also called Rees modification). Our work extends previous studies on the Cohen-Macaulayness of multi-Rees algebras.
---
PDF链接:
https://arxiv.org/pdf/0705.1839


雷达卡



京公网安备 11010802022788号







