楼主: nandehutu2022
472 0

[经济学] 通过$ell_0$-惩罚经验的高维分类 风险最小化 [推广有奖]

  • 0关注
  • 5粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
69.3121
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
24246 点
帖子
4004
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2022-4-20

楼主
nandehutu2022 在职认证  发表于 2022-3-6 18:00:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
我们考虑了一个高维二元分类问题,并构造了一个分类过程,该过程通过对选择特征数的惩罚来最小化经验误分类风险。我们得到了估计稀疏性和超额误分类风险的非渐近概率界。特别地,我们证明了我们的方法得到了一个稀疏解,该解的L0范数可以任意接近于真稀疏的概率很高,并且得到了对于超额误分类风险的收敛速度。所提出的程序是通过混合整数线性规划的方法实现的。蒙特卡罗实验表明了它的数值性能。
---
英文标题:
《High Dimensional Classification through $\ell_0$-Penalized Empirical
  Risk Minimization》
---
作者:
Le-Yu Chen and Sokbae Lee
---
最新提交年份:
2018
---
分类信息:

一级分类:Statistics        统计学
二级分类:Methodology        方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Economics        经济学
二级分类:Econometrics        计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Statistics        统计学
二级分类:Machine Learning        机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--

---
英文摘要:
  We consider a high dimensional binary classification problem and construct a classification procedure by minimizing the empirical misclassification risk with a penalty on the number of selected features. We derive non-asymptotic probability bounds on the estimated sparsity as well as on the excess misclassification risk. In particular, we show that our method yields a sparse solution whose l0-norm can be arbitrarily close to true sparsity with high probability and obtain the rates of convergence for the excess misclassification risk. The proposed procedure is implemented via the method of mixed integer linear programming. Its numerical performance is illustrated in Monte Carlo experiments.
---
PDF链接:
https://arxiv.org/pdf/1811.09540
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:econometrics Minimization Multivariate Econometric Dimensional misclassification 分类 风险 超额 程序

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-18 15:23