摘要翻译:
在Nogin\cite{Nogin}工作的基础上,我们证明了辫子群$B_4$在$B_2=1$和$B_3=0$的Fano三元向量丛的完全例外集上传递作用。等价地,这个群传递性地作用于这样一个Fano上的简单螺旋集(考虑到导出范畴中的一个移位)。我们还证明了在$B_2=1$且反协调类非常充足的三重条件下,每一个例外相干簇都是局部自由的。
---
英文标题:
《Simple helices on Fano threefolds》
---
作者:
Alexander Polishchuk
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Building on the work of Nogin \cite{Nogin}, we prove that the braid group $B_4$ acts transitively on full exceptional collections of vector bundles on Fano threefolds with $b_2=1$ and $b_3=0$. Equivalently, this group acts transitively on the set of simple helices (considered up to a shift in the derived category) on such a Fano threefold. We also prove that on threefolds with $b_2=1$ and very ample anticanonical class, every exceptional coherent sheaf is locally free.
---
PDF链接:
https://arxiv.org/pdf/0710.4195


雷达卡



京公网安备 11010802022788号







