摘要翻译:
利用光滑有理曲面上某些对数对W2(k)的提升性质,证明了正特征有理曲面上的Kawamata-Viehweg消失定理成立。作为推论,Kawamata-Viehweg消失定理在对数del Pezzo曲面上具有正特征。
---
英文标题:
《Kawamata-Viehweg Vanishing on Rational Surfaces in Positive
Characteristic》
---
作者:
Qihong Xie
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We prove that the Kawamata-Viehweg vanishing theorem holds on rational surfaces in positive characteristic by means of the lifting property to W_2(k) of certain log pairs on smooth rational surfaces. As a corollary, the Kawamata-Viehweg vanishing theorem holds on log del Pezzo surfaces in positive characteristic.
---
PDF链接:
https://arxiv.org/pdf/0710.2706


雷达卡



京公网安备 11010802022788号







