摘要翻译:
我们证明了代数环面上Laurent多项式的每一个完全交与超平面上主函数的补中的完全交同构,反之亦然。我们称这种关联为大风对偶,因为多项式中的单项式的指数会湮没主函数的权重。利用Gale对偶给出了主函数系统解的个数的Kouchnirenko定理,并计算了一般主函数完全交集的拓扑不变量。
---
英文标题:
《Gale duality for complete intersections》
---
作者:
Fr\'ed\'eric Bihan (Universit\'e de Savoie) and Frank Sottile (Texas
A&M University)
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
We show that every complete intersection of Laurent polynomials in an algebraic torus is isomorphic to a complete intersection of master functions in the complement of a hyperplane arrangement, and vice versa. We call this association Gale duality because the exponents of the monomials in the polynomials annihilate the weights of the master functions. We use Gale duality to give a Kouchnirenko theorem for the number of solutions to a system of master functions and to compute some topological invariants of generic master function complete intersections.
---
PDF链接:
https://arxiv.org/pdf/0706.3745


雷达卡



京公网安备 11010802022788号







