摘要翻译:
在一定的情况下,人类的认知功能很难用经典的人工智能结构来表示。在多发性神经病的诊断中,这种困难是基于病变沿神经纤维的空间分布,以及几种部分诊断的综合。针对这一问题,我们在建立专家系统(NEUROP)时,提出了一种将有限自动机与一阶逻辑相结合的异构知识表示方法。本文研究了由肌电图测试特征引起的知识表示问题,并提出了一个允许这种知识建模的专家系统体系结构。
---
英文标题:
《Heterogeneous knowledge representation using a finite automaton and
first order logic: a case study in electromyography》
---
作者:
Vincent Rialle (TIMC, DMIS), Annick Vila, Yves Besnard (TIMC)
---
最新提交年份:
2009
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
In a certain number of situations, human cognitive functioning is difficult to represent with classical artificial intelligence structures. Such a difficulty arises in the polyneuropathy diagnosis which is based on the spatial distribution, along the nerve fibres, of lesions, together with the synthesis of several partial diagnoses. Faced with this problem while building up an expert system (NEUROP), we developed a heterogeneous knowledge representation associating a finite automaton with first order logic. A number of knowledge representation problems raised by the electromyography test features are examined in this study and the expert system architecture allowing such a knowledge modeling are laid out.
---
PDF链接:
https://arxiv.org/pdf/0903.5289