摘要翻译:
设$k$为任意字段。利用Tschirnhausen变换,研究了求解$k$上对称群的泛型多项式子场问题的一般方法。基于前一部分的一般结果,我们给出了$frak{S}_3$和$c_3$上的三次泛型多项式的场同构问题和子场问题的显式解。作为三次情形的应用,我们还给出了几个在$k$上的六次泛型多项式。
---
英文标题:
《A geometric framework for the subfield problem of generic polynomials
via Tschirnhausen transformation》
---
作者:
Akinari Hoshi, Katsuya Miyake
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let $k$ be an arbitrary field. We study a general method to solve the subfield problem of generic polynomials for the symmetric groups over $k$ via Tschirnhausen transformation. Based on the general result in the former part, we give an explicit solution to the field isomorphism problem and the subfield problem of cubic generic polynomials for $\frak{S}_3$ and $C_3$ over $k$. As an application of the cubic case, we also give several sextic generic polynomials over $k$.
---
PDF链接:
https://arxiv.org/pdf/0710.0287


雷达卡



京公网安备 11010802022788号







