摘要翻译:
我们证明了任意微齐次空间的量子上同调环是半单的。这意味着复共轭定义了量子上同调环局域在量子参数处的代数自同构。我们检查这个对合与以前一篇论文中定义的奇怪的对偶相吻合。我们导出了Gromov-Witten不变量的Vafa-Intriligator型公式。
---
英文标题:
《Quantum cohomology of minuscule homogeneous spaces III : semi-simplicity
and consequences》
---
作者:
Pierre-Emmanuel Chaput (LMJL), Laurent Manivel (IF), Nicolas Perrin
(IMJ)
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We prove that the quantum cohomology ring of any minuscule or cominuscule homogeneous space, specialized at q=1, is semisimple. This implies that complex conjugation defines an algebra automorphism of the quantum cohomology ring localized at the quantum parameter. We check that this involution coincides with the strange duality defined in a previous paper. We deduce Vafa-Intriligator type formulas for the Gromov-Witten invariants.
---
PDF链接:
https://arxiv.org/pdf/0710.1224


雷达卡



京公网安备 11010802022788号







