摘要翻译:
研究了Castelnuovo-Mumford正则性对一些经典函子的性质:正特征Frobenius函子Tor乘幂或乘积(理想)。这些结果推广和改进了以前的一些作者在这些问题上的结果。作为应用,在适当的几何假设下,我们给出了射影格式的子格式交的正则性的结果。从几何应用的角度出发,给出了多Tor模的刚性及其消失的刻划。
---
英文标题:
《On the behavior of Castelnuovo-Mumford regularity with respect to some
functors》
---
作者:
Marc Chardin
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We investigate the behavior of Castelnuovo-Mumford regularity with respect to some classical functors : Tor, the Frobenius functor in positive characteristic, taking a power or a product (on ideals). These generalizes and refines previous results on these issues by several authors. As an application we provide results on the regularity of an intersection of subschemes of a projective scheme, under appropriate geometric hypotheses. Results on the rigidity of multiple Tor modules and on the characterization of their vanishing are given, motivated by geometric applications.
---
PDF链接:
https://arxiv.org/pdf/0706.2731


雷达卡



京公网安备 11010802022788号







