摘要翻译:
我们发现,在有盖毛细管狭缝中的凝聚是一种连续的界面临界现象,与其他几种表面相变密切相关。在三维(3D)中,吸附和解吸分支分别对应于弯月面从帽盖和开口处的解绑,相当于类2D的完全润湿转变。对于色散力,由于几何结构和分子间作用力的不同相互作用,两个分支上的奇异性是不同的。在二维中,我们与二维临界润湿和楔形填充转变建立了精确的联系或协方差,即我们建立了在非常不同几何形状下的某些界面性质是相同的。我们对有限毛细管中普遍标度和协方差的预测得到了广泛的Ising模型二维和三维模拟研究的支持。
---
英文标题:
《Continuous Capillary Condensation》
---
作者:
A.O. Parry, C. Rascon, N.B. Wilding and R. Evans
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Soft Condensed Matter 软凝聚态物质
分类描述:Membranes, polymers, liquid crystals, glasses, colloids, granular matter
膜,聚合物,液晶,玻璃,胶体,颗粒物质
--
---
英文摘要:
We show that condensation in a capped capillary slit is a continuous interfacial critical phenomenon, related intimately to several other surface phase transitions. In three dimensions (3d), the adsorption and desorption branches correspond to the unbinding of the meniscus from the cap and opening, respectively and are equivalent to 2d-like complete-wetting transitions. For dispersion forces, the singularities on the two branches are distinct, owing to the different interplay of geometry and intermolecular forces. In 2d we establish precise connection, or covariance, with 2d critical-wetting and wedge-filling transitions, i.e. we establish that certain interfacial properties in very different geometries are identical. Our predictions of universal scaling and covariance in finite capillaries are supported by extensive Ising model simulation studies in 2d and 3d.
---
PDF链接:
https://arxiv.org/pdf/704.2148


雷达卡



京公网安备 11010802022788号







