摘要翻译:
我们考虑了一类随机图,称为随机画笔,它是通过在Z^D的顶点上添加任意长度的线性图来构造的。我们证明了对于d=2,所有的随机刷都具有谱维数d_s=2。对于d=3,我们有{5\over 2}\leq d_s\leq 3;对于d\geq4,我们有3\leq d_s\leq d。
---
英文标题:
《The spectral dimension of random brushes》
---
作者:
Thordur Jonsson and Sigurdur Orn Stefansson
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We consider a class of random graphs, called random brushes, which are constructed by adding linear graphs of random lengths to the vertices of Z^d viewed as a graph. We prove that for d=2 all random brushes have spectral dimension d_s=2. For d=3 we have {5\over 2}\leq d_s\leq 3 and for d\geq 4 we have 3\leq d_s\leq d.
---
PDF链接:
https://arxiv.org/pdf/709.3678


雷达卡



京公网安备 11010802022788号







