摘要翻译:
我们研究了三角范畴之间由函子诱导的稳定性条件。给出了作用于光滑射影簇的有限群,证明了不变稳定条件子集作为闭子流形嵌入到等变导出范畴的稳定流形中。作为一个应用,我们考察了Kummer曲面和Enriques曲面的稳定性条件,并改进了文献中已有的关于后者曲面的Torelli定理的导出版本。我们还研究了射影空间上的稳定性条件与其正则丛上的稳定性条件之间的关系。
---
英文标题:
《Inducing stability conditions》
---
作者:
Emanuele Macri, Sukhendu Mehrotra, Paolo Stellari
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We study stability conditions induced by functors between triangulated categories. Given a finite group acting on a smooth projective variety we prove that the subset of invariant stability conditions embeds as a closed submanifold into the stability manifold of the equivariant derived category. As an application we examine stability conditions on Kummer and Enriques surfaces and we improve the derived version of the Torelli Theorem for the latter surfaces already present in the litterature. We also study the relationship between stability conditions on projective spaces and those on their canonical bundles.
---
PDF链接:
https://arxiv.org/pdf/0705.3752


雷达卡



京公网安备 11010802022788号







