摘要翻译:
在局部化领域,线性最小二乘解是常用的方法。与受噪声影响较大的非线性求解器相比,该解可以在不知道任何起始条件的情况下提供位置估计。线性最小二乘解通过用MoorePenrose伪逆解超定方程来最小化高斯噪声。不幸的是,如果遇到非高斯噪声,这种解决方案就失败了。该出版物提供了一个直接的解决方案,它能够使用预滤波数据的LPM(RNL)方程。用于线性位置估计的输入将不是原始数据,而是经过时间滤波的数据,因此这种解将被称为直接解。结果表明,所提出的对称直接解优于非对称直接解,特别是优于未预滤波的线性最小二乘解。
---
英文标题:
《Improved linear direct solution for asynchronous radio network
localization (RNL)》
---
作者:
Juri Sidorenko, Norbert Scherer-Negenborn, Michael Arens, Eckart
Michaelsen
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
In the field of localization the linear least square solution is frequently used. This solution is compared to nonlinear solvers more effected by noise, but able to provide a position estimation without the knowledge of any starting condition. The linear least square solution is able to minimize Gaussian noise by solving an overdetermined equation with the MoorePenrose pseudoinverse. Unfortunately this solution fails if it comes to non Gaussian noise. This publication presents a direct solution which is able to use prefiltered data for the LPM (RNL) equation. The used input for the linear position estimation will not be the raw data but over the time filtered data, for this reason this solution will be called direct solution. It will be shown that the presented symmetrical direct solution is superior to non symmetrical direct solution and especially to the not prefiltered linear least square solution.
---
PDF链接:
https://arxiv.org/pdf/1801.03358


雷达卡



京公网安备 11010802022788号







