摘要翻译:
本文提出了一种新的算法来优化基于正交频分复用的认知无线电系统在信道不确定情况下的能量效率(EE)。我们提出了一个优化问题,该问题保证次级用户(SU)的最小所需速率和特定的功率预算,同时以统计的方式限制对初级用户(PUs)的干扰。该优化问题是非凸的,利用分式规划的概念将其转化为一个等价问题。与文献中的所有相关工作不同,我们考虑了不完全信道状态信息(CSI)对SU发射机和接收机之间链路的影响,此外,我们还考虑了SU有限感知能力的影响。由于在统计上满足干扰约束,所以SU发射机不需要来自PUs接收机的完美CSI反馈。仿真结果表明,信道估计误差越大,信道估计误差越小。与文献中相关工作的比较表明,如果SU不考虑频谱感知误差,则PUs接收机的干扰门限会严重超出,EE会略微恶化。
---
英文标题:
《Energy-Efficient Power Loading for OFDM-based Cognitive Radio Systems
with Channel Uncertainties》
---
作者:
Ebrahim Bedeer, Osama Amin, Octavia A. Dobre, Mohamed H. Ahmed, and
Kareem E. Baddour
---
最新提交年份:
2019
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science 计算机科学
二级分类:Information Theory 信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Mathematics 数学
二级分类:Information Theory 信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
---
英文摘要:
In this paper, we propose a novel algorithm to optimize the energy-efficiency (EE) of orthogonal frequency division multiplexing-based cognitive radio systems under channel uncertainties. We formulate an optimization problem that guarantees a minimum required rate and a specified power budget for the secondary user (SU), while restricting the interference to primary users (PUs) in a statistical manner. The optimization problem is non-convex and it is transformed to an equivalent problem using the concept of fractional programming. Unlike all related works in the literature, we consider the effect of imperfect channel-stateinformation (CSI) on the links between the SU transmitter and receiver pairs and we additionally consider the effect of limited sensing capabilities of the SU. Since the interference constraints are met statistically, the SU transmitter does not require perfect CSI feedback from the PUs receivers. Simulation results sho w that the EE deteriorates as the channel estimation error increases. Comparisons with relevant works from the literature show that the interference thresholds at the PUs receivers can be severely exceeded and the EE is slightly deteriorated if the SU does no t account for spectrum sensing errors.
---
PDF链接:
https://arxiv.org/pdf/1801.05353


雷达卡



京公网安备 11010802022788号







