楼主: 能者818
312 0

[量化金融] 基于Bregman-proximal信赖域方法的多元GARCH估计 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
39.5040
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24699 点
帖子
4115
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2024-12-24

楼主
能者818 在职认证  发表于 2022-3-8 08:13:25 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
多元GARCH时间序列模型的估计是一项困难的任务,主要是由于该问题所表现出的显着的过参数化,通常被称为“维数诅咒”。例如,在VEC族的情况下,模型中涉及的参数个数在问题的维数上以四阶多项式的形式增长。此外,这些参数还受到复杂的非线性约束,以确保模型设计中使用的条件协方差矩阵的平稳解的存在性和半正定性。到目前为止,这个问题在文献中只在具有强简约约束的低维情况下得到解决。本文给出了任意维估计问题的一般形式,并给出了求解该问题的Bregman-邻近信赖域方法。Bregman-prosulal方法允许我们在原始空间中以一种非常有效和自然的方式处理约束,信赖域机制稳定并加快了方案的速度。初步的计算实验证实了该方法的良好性能。
---
英文标题:
《Multivariate GARCH estimation via a Bregman-proximal trust-region method》
---
作者:
St\'ephane Chr\'etien and Juan-Pablo Ortega
---
最新提交年份:
2011
---
分类信息:

一级分类:Quantitative Finance        数量金融学
二级分类:Computational Finance        计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Quantitative Finance        数量金融学
二级分类:Statistical Finance        统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--

---
英文摘要:
  The estimation of multivariate GARCH time series models is a difficult task mainly due to the significant overparameterization exhibited by the problem and usually referred to as the "curse of dimensionality". For example, in the case of the VEC family, the number of parameters involved in the model grows as a polynomial of order four on the dimensionality of the problem. Moreover, these parameters are subjected to convoluted nonlinear constraints necessary to ensure, for instance, the existence of stationary solutions and the positive semidefinite character of the conditional covariance matrices used in the model design. So far, this problem has been addressed in the literature only in low dimensional cases with strong parsimony constraints. In this paper we propose a general formulation of the estimation problem in any dimension and develop a Bregman-proximal trust-region method for its solution. The Bregman-proximal approach allows us to handle the constraints in a very efficient and natural way by staying in the primal space and the Trust-Region mechanism stabilizes and speeds up the scheme. Preliminary computational experiments are presented and confirm the very good performances of the proposed approach.
---
PDF链接:
https://arxiv.org/pdf/1101.5475
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:多元GARCH GARCH ARCH GMA RCH proximal dimensionality model very region

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-2 23:13