楼主: 何人来此
503 0

[经济学] 可再生能源电动汽车充电站的随机动态定价 集成储能 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
64.8012
学术水平
1 点
热心指数
6 点
信用等级
0 点
经验
24593 点
帖子
4128
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
何人来此 在职认证  发表于 2022-3-8 09:22:25 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
研究了电动汽车(EV)充电服务提供商的随机动态定价和能量管理策略问题。在可再生能源集成和储能系统存在的情况下,电动汽车充电服务提供商必须应对多种不确定性--充电需求波动性、可再生能源发电固有的间歇性和批发电价波动。我们的工作动机是为充电服务供应商提供指引,以厘定适当的充电价格和管理电力,以平衡提高盈利能力、提高客户满意度和减少对电网的影响这三个相互竞争的目标,尽管存在这些不确定性。我们提出了一个新的度量来评估对电网的影响,而不需要求解完整的潮流方程。为了保护服务提供商免受严重的财务损失,在模型中纳入了利润保障。采用随机动态规划(SDP)算法和贪心算法(基准算法)推导电价和购电策略。导出了多目标优化问题的Pareto前沿。仿真结果表明,与贪婪算法相比,采用SDP算法可以获得高达7%的收益。此外,我们观察到充电服务提供商能够通过定价信号重塑时空充电需求,以减少对电网的影响。
---
英文标题:
《Stochastic Dynamic Pricing for EV Charging Stations with Renewables
  Integration and Energy Storage》
---
作者:
Chao Luo, Yih-Fang Huang, and Vijay Gupta
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Economics        经济学
二级分类:Econometrics        计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Mathematics        数学
二级分类:Optimization and Control        优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--

---
英文摘要:
  This paper studies the problem of stochastic dynamic pricing and energy management policy for electric vehicle (EV) charging service providers. In the presence of renewable energy integration and energy storage system, EV charging service providers must deal with multiple uncertainties --- charging demand volatility, inherent intermittency of renewable energy generation, and wholesale electricity price fluctuation. The motivation behind our work is to offer guidelines for charging service providers to determine proper charging prices and manage electricity to balance the competing objectives of improving profitability, enhancing customer satisfaction, and reducing impact on power grid in spite of these uncertainties. We propose a new metric to assess the impact on power grid without solving complete power flow equations. To protect service providers from severe financial losses, a safeguard of profit is incorporated in the model. Two algorithms --- stochastic dynamic programming (SDP) algorithm and greedy algorithm (benchmark algorithm) --- are applied to derive the pricing and electricity procurement policy. A Pareto front of the multiobjective optimization is derived. Simulation results show that using SDP algorithm can achieve up to 7% profit gain over using greedy algorithm. Additionally, we observe that the charging service provider is able to reshape spatial-temporal charging demands to reduce the impact on power grid via pricing signals.
---
PDF链接:
https://arxiv.org/pdf/1801.02128
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:可再生能源 再生能源 电动汽车 充电站 可再生 stochastic SDP providers power 能够

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-26 23:40