摘要翻译:
对实代数函数引入实对数规范阈值和实跳跃数。一个真正的跳跃数是$B$-函数的根,如果它与最小值的差值小于1。实对数正则阈值是最小实跳跃数,它与由函数绝对值的复幂定义的分布的最大极点重合。但是,如果函数的实零轨迹的余维数大于1,则这个数可能大于1。因此,它不一定与B-函数直到一个符号的最大根重合,也不一定与复化的对数规范阈值重合。实际上,真实的跳跃数甚至可以与复化的非积分跳跃数不相交。
---
英文标题:
《On real log canonical thresholds》
---
作者:
Morihiko Saito
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We introduce real log canonical threshold and real jumping numbers for real algebraic functions. A real jumping number is a root of the $b$-function up to a sign if its difference with the minimal one is less than 1. The real log canonical threshold, which is the minimal real jumping number, coincides up to a sign with the maximal pole of the distribution defined by the complex power of the absolute value of the function. However, this number may be greater than 1 if the codimension of the real zero locus of the function is greater than 1. So it does not necessarily coincide with the maximal root of the b-function up to a sign, nor with the log canonical threshold of the complexification. In fact, the real jumping numbers can be even disjoint from the non-integral jumping numbers of the complexification.
---
PDF链接:
https://arxiv.org/pdf/0707.2308


雷达卡



京公网安备 11010802022788号







