楼主: 能者818
398 0

[计算机科学] 多一点,好得多:通过一个简单的路径来提高路径质量 合并算法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
39.5040
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24699 点
帖子
4115
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2024-12-24

楼主
能者818 在职认证  发表于 2022-3-8 10:39:25 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
基于采样的运动规划器是生成无碰撞运动路径的有效手段。然而,这些运动路径的质量(就质量度量而言,如路径长度、间隙、平滑度或能量)往往很低,尤其是在高维构型空间中。本文介绍了一种简单的算法,用于将任意数目的输入运动路径合并为高质量的混合输出路径,从而得到了路径质量的广义和一般表达式。我们的方法是基于这样一个观察,即每个解决方案中某些子路径的质量可能高于整个路径的质量。我们最近提出了一种动态规划算法,用于比较和聚类多个运动路径,大大减少了合并算法的运行时间。我们在多达12个自由度的运动规划问题中测试了我们的算法。我们证明了我们的算法能够合并由几个不同的运动规划器产生的少数输入路径,以产生更高质量的输出路径。
---
英文标题:
《A Little More, a Lot Better: Improving Path Quality by a Simple Path
  Merging Algorithm》
---
作者:
Barak Raveh, Angela Enosh and Dan Halperin
---
最新提交年份:
2010
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Robotics        机器人学
分类描述:Roughly includes material in ACM Subject Class I.2.9.
大致包括ACM科目I.2.9类的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--

---
英文摘要:
  Sampling-based motion planners are an effective means for generating collision-free motion paths. However, the quality of these motion paths (with respect to quality measures such as path length, clearance, smoothness or energy) is often notoriously low, especially in high-dimensional configuration spaces. We introduce a simple algorithm for merging an arbitrary number of input motion paths into a hybrid output path of superior quality, for a broad and general formulation of path quality. Our approach is based on the observation that the quality of certain sub-paths within each solution may be higher than the quality of the entire path. A dynamic-programming algorithm, which we recently developed for comparing and clustering multiple motion paths, reduces the running time of the merging algorithm significantly. We tested our algorithm in motion-planning problems with up to 12 degrees of freedom. We show that our algorithm is able to merge a handful of input paths produced by several different motion planners to produce output paths of much higher quality.
---
PDF链接:
https://arxiv.org/pdf/1001.2391
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Presentation Intelligence Presentatio uncertainty Programming 任意 quality 高质量 用于 质量

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-22 06:51