楼主: mingdashike22
338 0

[统计数据] 重要抽样方案自适应混合的收敛性 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
73.8216
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
24862 点
帖子
4109
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
mingdashike22 在职认证  发表于 2022-3-8 11:21:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
在设计高效的仿真算法时,常常会遇到方案分布选择不当的问题。虽然给定的仿真内核的性能可以后验地说明该内核对手头的问题有多充分,但对内核的永久在线修改会引起对结果算法有效性的担忧。虽然这个问题对于MCMC算法来说是最棘手的,但对于重要性抽样算法的等效版本可以非常精确地进行验证。我们给出了自适应混合种群Monte Carlo算法收敛的充分条件,并证明了Rao-Blackwellized版本在Kullback散度准则下渐近达到最优,而更基本的版本不能从重复更新中受益。
---
英文标题:
《Convergence of adaptive mixtures of importance sampling schemes》
---
作者:
R. Douc, A. Guillin, J.-M. Marin, C. P. Robert
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Statistics Theory        统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics        统计学
二级分类:Computation        计算
分类描述:Algorithms, Simulation, Visualization
算法、模拟、可视化
--
一级分类:Statistics        统计学
二级分类:Statistics Theory        统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--

---
英文摘要:
  In the design of efficient simulation algorithms, one is often beset with a poor choice of proposal distributions. Although the performance of a given simulation kernel can clarify a posteriori how adequate this kernel is for the problem at hand, a permanent on-line modification of kernels causes concerns about the validity of the resulting algorithm. While the issue is most often intractable for MCMC algorithms, the equivalent version for importance sampling algorithms can be validated quite precisely. We derive sufficient convergence conditions for adaptive mixtures of population Monte Carlo algorithms and show that Rao--Blackwellized versions asymptotically achieve an optimum in terms of a Kullback divergence criterion, while more rudimentary versions do not benefit from repeated updating.
---
PDF链接:
https://arxiv.org/pdf/708.0711
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:抽样方案 Modification Multivariate distribution Monte Carlo 说明 适应 kernel often simulation

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-24 16:23