Â¥Ö÷: ´ó¶àÊý88
292 0

[ͳ¼ÆÊý¾Ý] ȱʧʧЧʱ¼äÊý¾ÝµÄ·Ç²ÎÊýºÍ°ë²ÎÊý·ÖÎö ʧЧָ±ê [ÍÆ¹ãÓн±]

  • 0¹Ø×¢
  • 3·ÛË¿

»áÔ±

ѧÊõȨÍþ

67%

»¹²»ÊÇVIP/¹ó±ö

-

ÍþÍû
10 ¼¶
ÂÛ̳±Ò
10 ¸ö
ͨÓûý·Ö
66.4132
ѧÊõˮƽ
0 µã
ÈÈÐÄÖ¸Êý
4 µã
ÐÅÓõȼ¶
0 µã
¾­Ñé
23294 µã
Ìû×Ó
3809
¾«»ª
0
ÔÚÏßʱ¼ä
0 Сʱ
×¢²áʱ¼ä
2022-2-24
×îºóµÇ¼
2022-4-15

Â¥Ö÷
´ó¶àÊý88 ÔÚÖ°ÈÏÖ¤  ·¢±íÓÚ 2022-3-8 14:00:00 À´×ÔÊÖ»ú |AIдÂÛÎÄ

+2 ÂÛ̳±Ò
kÈË ²ÎÓë»Ø´ð

¾­¹ÜÖ®¼ÒËÍÄúÒ»·Ý

Ó¦½ì±ÏÒµÉúרÊô¸£Àû!

ÇóÖ°¾ÍҵȺ
ÕÔ°²¶¹ÀÏʦ΢ÐÅ£ºzhaoandou666

¾­¹ÜÖ®¼ÒÁªºÏCDA

ËÍÄúÒ»¸öÈ«¶î½±Ñ§½ðÃû¶î~ !

¸ÐлÄú²ÎÓëÂÛ̳ÎÊÌâ»Ø´ð

¾­¹ÜÖ®¼ÒËÍÄúÁ½¸öÂÛ̳±Ò£¡

+2 ÂÛ̳±Ò
ÕªÒª·­Ò룺
ÒýÈëÁËCox±ÈÀý·çÏÕÄ£Ðͻعé²ÎÊýµÄÒ»Àà¹À¼Æº¯Êý£¬ÒÔÔÊÐíijЩÑо¿¶ÔÏó³öÏÖδ֪µÄʧЧ״̬¡£ÔÚκ͵ÄÌõ¼þϽ¨Á¢ÁËËùµÃ¹À¼ÆÁ¿µÄÏàºÏÐԺͽ¥½üÕý̬ÐÔ¡£¹¹ÔìÁËÒ»¸ö´ïµ½ÀàµÄ×îС·½²î-Э·½²î½çµÄ×ÔÊÊÓ¦¹À¼ÆÆ÷¡£ÊýÖµÑо¿±íÃ÷£¬½¥½ü±Æ½ü·¨ÔÚʵ¼ÊÓ¦ÓÃÖÐÊÇ×ã¹»µÄ£¬¶øÇÒ×ÔÊÊÓ¦¹À¼ÆÆ÷ÔÚÍêÈ«ÇéÐηÖÎöÖеÄЧÂÊÔöÒæÊÇÏ൱¿É¹ÛµÄ¡£¶ÔÓÚͬÖÊÖÖȺÉú´æº¯ÊýµÄ·Ç²ÎÊý¹À¼ÆºÍCoxÄ£ÐÍÏÂÀÛ»ý»ùÏßΣÏÕº¯ÊýµÄ¹À¼Æ£¬Ò²·¢Õ¹ÁËÀàËÆµÄ·½·¨¡£
---
Ó¢ÎıêÌ⣺
¡¶Non- and semi-parametric analysis of failure time data with missing
  failure indicators¡·
---
×÷Õߣº
Irene Gijbels, Danyu Lin, Zhiliang Ying
---
×îÐÂÌá½»Äê·Ý£º
2007
---
·ÖÀàÐÅÏ¢£º

Ò»¼¶·ÖÀࣺMathematics        Êýѧ
¶þ¼¶·ÖÀࣺStatistics Theory        ͳ¼ÆÀíÂÛ
·ÖÀàÃèÊö£ºApplied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
Ó¦ÓÃͳ¼Æ¡¢¼ÆËãͳ¼ÆºÍÀíÂÛͳ¼Æ£ºÀýÈçͳ¼ÆÍƶϡ¢»Ø¹é¡¢Ê±¼äÐòÁС¢¶àÔª·ÖÎö¡¢Êý¾Ý·ÖÎö¡¢Âí¶û¿É·òÁ´ÃÉÌØ¿¨ÂÞ¡¢ÊµÑéÉè¼Æ¡¢°¸ÀýÑо¿
--
Ò»¼¶·ÖÀࣺStatistics        ͳ¼ÆÑ§
¶þ¼¶·ÖÀࣺStatistics Theory        ͳ¼ÆÀíÂÛ
·ÖÀàÃèÊö£ºstat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.ThÊÇMath.StµÄ±ðÃû¡£½¥½ü£¬±´Ò¶Ë¹ÍÆÂÛ£¬¾ö²ßÀíÂÛ£¬¹À¼Æ£¬»ù´¡£¬ÍÆÂÛ£¬¼ìÑé¡£
--

---
Ó¢ÎÄÕªÒª£º
  A class of estimating functions is introduced for the regression parameter of the Cox proportional hazards model to allow unknown failure statuses on some study subjects. The consistency and asymptotic normality of the resulting estimators are established under mild conditions. An adaptive estimator which achieves the minimum variance-covariance bound of the class is constructed. Numerical studies demonstrate that the asymptotic approximations are adequate for practical use and that the efficiency gain of the adaptive estimator over the complete-case analysis can be quite substantial. Similar methods are also developed for the nonparametric estimation of the survival function of a homogeneous population and for the estimation of the cumulative baseline hazard function under the Cox model.
---
PDFÁ´½Ó£º
https://arxiv.org/pdf/708.1058
¶þάÂë

ɨÂë¼ÓÎÒ À­ÄãÈëȺ

Çë×¢Ã÷£ºÐÕÃû-¹«Ë¾-ְλ

ÒÔ±ãÉóºË½øÈº×ʸñ£¬Î´×¢Ã÷Ôò¾Ü¾ø

¹Ø¼ü´Ê£º²ÎÊý·ÖÎö ·Ç²ÎÊý °ë²ÎÊý Multivariate proportional Э·½²î º¯Êý ÊÊÓ¦ ½¥½ü estimation

ÄúÐèÒªµÇ¼ºó²Å¿ÉÒÔ»ØÌû µÇ¼ | ÎÒҪע²á

±¾°æÎ¢ÐÅȺ
jg-xs1
À­Äú½ø½»Á÷Ⱥ
GMT+8, 2025-12-9 06:54