摘要翻译:
Hesse认为,由hessian行列式消失的方程定义的不可约射影超曲面必然是锥。Gordan和Noether证明了对于$n\leq3$,这是正确的,并且对于每$n\geq4$,构造了反例。Gordan和Noether和Franchetta给出了$\pp^4$中的hessian消失且不是锥的超曲面的分类。这里我们用几何术语来翻译Gordan和Noether方法,提供这些结果的直接几何证明。
---
英文标题:
《A geometrical approach to Gordan--Noether's and Franchetta's
contributions to a question posed by Hesse》
---
作者:
Alice Garbagnati, Flavia Repetto
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Hesse claimed that an irreducible projective hypersurface in $\PP^n$ defined by an equation with vanishing hessian determinant is necessarily a cone. Gordan and Noether proved that this is true for $n\leq 3$ and constructed counterexamples for every $n\geq 4$. Gordan and Noether and Franchetta gave classification of hypersurfaces in $\PP^4$ with vanishing hessian and which are not cones. Here we translate in geometric terms Gordan and Noether approach, providing direct geometrical proofs of these results.
---
PDF链接:
https://arxiv.org/pdf/0802.0959


雷达卡



京公网安备 11010802022788号







