摘要翻译:
给定一个正规曲面奇点$(X,Q)$和一个非奇异曲面$\pi:X\to S$的双形态射,我们研究了$\pi$的例外因子$l$的局部几何。我们证明了在$q$处与$l$相切的空间的维数等于在$q$处相交的例外成分的个数。推导了与收缩一定数量的不可约曲线的这种双形投影的存在性有关的结果。利用这些项得到了极小奇点的一个新的刻画。
---
英文标题:
《On the exceptional locus of the birational projections of normal surface
singularity into a plane》
---
作者:
Jesus Fernandez-Sanchez
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
Given a normal surface singularity $(X, Q)$ and a birational morphism to a non- singular surface $\pi : X \to S$, we investigate the local geometry of the exceptional divisor $L$ of $\pi$. We prove that the dimension of the tangent space to $L$ at $Q$ equals the number of exceptional components meeting at $Q$. Consequences relative to the existence of such birational projections contracting a prescribed number of irreducible curves are deduced. A new characterization of minimal singularities is obtained in these terms.
---
PDF链接:
https://arxiv.org/pdf/0804.4062


雷达卡



京公网安备 11010802022788号







