摘要翻译:
单体-二聚体模型是统计力学的基础。然而,它在计算上是$#p$-完全的,即使对于二维问题也是如此。本文通过将二部图的全部匹配数转化为扩展二部图的完全匹配数,给出了单体-二聚体模型配分函数的矩阵永久表达式。采用序贯重要性抽样算法计算永久物。对于具有周期条件的二维晶格,我们得到了$0.6627\PM0.0002$,精确值为$H2=0.662798972834$。对于具有周期条件的三维晶格,我们的数值结果是$0.7847\pM0.0014$,{符合已知的界$0.7653\leqH_3\leq0.7862$
---
英文标题:
《Approximating the monomer-dimer constants through matrix permanent》
---
作者:
Yan Huo, Heng Liang, Si-Qi Liu, Fengshan Bai
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
The monomer-dimer model is fundamental in statistical mechanics. However, it is $#P$-complete in computation, even for two dimensional problems. A formulation in matrix permanent for the partition function of the monomer-dimer model is proposed in this paper, by transforming the number of all matchings of a bipartite graph into the number of perfect matchings of an extended bipartite graph, which can be given by a matrix permanent. Sequential importance sampling algorithm is applied to compute the permanents. For two-dimensional lattice with periodic condition, we obtain $ 0.6627\pm0.0002$, where the exact value is $h_2=0.662798972834$. For three-dimensional lattice with periodic condition, our numerical result is $ 0.7847\pm0.0014$, {which agrees with the best known bound $0.7653 \leq h_3 \leq 0.7862$.}
---
PDF链接:
https://arxiv.org/pdf/708.1641


雷达卡



京公网安备 11010802022788号







