摘要翻译:
螺旋模型(SM)对应于与D.S.联合工程中引入的一类新的动力学约束模型。费希尔[8,9]。它们提供了具有理想玻璃干扰转变的有限维模型的第一个例子。这是由于一个潜在的干扰逾渗跃迁具有非常规的特征:它是不连续的(即在跃迁处逾渗团簇是紧凑的),并且典型的簇簇大小发散速度比任何幂律都快,导致弛豫时间的Vogel-Fulcher样发散。这里我们给出了SM的一个详细的物理分析,关于严格的证明见[5]。我们还证明了我们对SM的论证不需要任何与Jeng和Schwarz[10]最近的主张相反的修改。
---
英文标题:
《Spiral model, jamming percolation and glass-jamming transitions》
---
作者:
Giulio Biroli, Cristina Toninelli
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
The Spiral Model (SM) corresponds to a new class of kinetically constrained models introduced in joint works with D.S. Fisher [8,9]. They provide the first example of finite dimensional models with an ideal glass-jamming transition. This is due to an underlying jamming percolation transition which has unconventional features: it is discontinuous (i.e. the percolating cluster is compact at the transition) and the typical size of the clusters diverges faster than any power law, leading to a Vogel-Fulcher-like divergence of the relaxation time. Here we present a detailed physical analysis of SM, see [5] for rigorous proofs. We also show that our arguments for SM does not need any modification contrary to recent claims of Jeng and Schwarz [10].
---
PDF链接:
https://arxiv.org/pdf/709.0583


雷达卡



京公网安备 11010802022788号







