摘要翻译:
保证充足的流动性是预测市场设计者面临的关键挑战之一。文献中提出了各种做市算法,并在实践中进行了部署,但很少有人对它们的利弊进行系统的评价。我们提出了一个新的实验设计,用于在现场交易中比较市场结构,确保在具有相同交易群体的两个不同微观结构之间进行公平的比较。参与者根据他们在电脑屏幕上观察到的二维随机游动的结果进行交易。它们可以同时在两个市场上进行交易,对应于独立的水平和垂直随机游动。我们使用这个实验设计来比较流行的基于库存的对数市场评分规则(LMSR)做市商和一种新的基于信息的贝叶斯做市商(BMM)。我们的实验表明,BMM在控制流动性时可以在价格稳定和预期损失方面提供显着的收益;需要注意的是,与LMSR不同,BMM不保证有界损失。我们的研究还阐明了预测市场中做市商的一些一般性质。特别是,在对市场冲击的适应性和市场均衡期间的趋同之间存在着内在的权衡。
---
英文标题:
《Comparing Prediction Market Structures, With an Application to Market
Making》
---
作者:
Aseem Brahma, Sanmay Das and Malik Magdon-Ismail
---
最新提交年份:
2010
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Trading and Market Microstructure 交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Computational Engineering, Finance, and Science 计算工程、金融和科学
分类描述:Covers applications of computer science to the mathematical modeling of complex systems in the fields of science, engineering, and finance. Papers here are interdisciplinary and applications-oriented, focusing on techniques and tools that enable challenging computational simulations to be performed, for which the use of supercomputers or distributed computing platforms is often required. Includes material in ACM Subject Classes J.2, J.3, and J.4 (economics).
涵盖了计算机科学在科学、工程和金融领域复杂系统的数学建模中的应用。这里的论文是跨学科和面向应用的,集中在技术和工具,使挑战性的计算模拟能够执行,其中往往需要使用超级计算机或分布式计算平台。包括ACM学科课程J.2、J.3和J.4(经济学)中的材料。
--
---
英文摘要:
Ensuring sufficient liquidity is one of the key challenges for designers of prediction markets. Various market making algorithms have been proposed in the literature and deployed in practice, but there has been little effort to evaluate their benefits and disadvantages in a systematic manner. We introduce a novel experimental design for comparing market structures in live trading that ensures fair comparison between two different microstructures with the same trading population. Participants trade on outcomes related to a two-dimensional random walk that they observe on their computer screens. They can simultaneously trade in two markets, corresponding to the independent horizontal and vertical random walks. We use this experimental design to compare the popular inventory-based logarithmic market scoring rule (LMSR) market maker and a new information based Bayesian market maker (BMM). Our experiments reveal that BMM can offer significant benefits in terms of price stability and expected loss when controlling for liquidity; the caveat is that, unlike LMSR, BMM does not guarantee bounded loss. Our investigation also elucidates some general properties of market makers in prediction markets. In particular, there is an inherent tradeoff between adaptability to market shocks and convergence during market equilibrium.
---
PDF链接:
https://arxiv.org/pdf/1009.1446


雷达卡



京公网安备 11010802022788号







