楼主: kedemingshi
411 0

[计算机科学] GANC:贪婪凝聚归一化切割 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
89.2735
学术水平
0 点
热心指数
8 点
信用等级
0 点
经验
24665 点
帖子
4127
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
kedemingshi 在职认证  发表于 2022-3-9 11:00:01 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
本文提出了一种以归一化割准则最小化为目标的图聚类算法,并给出了模型顺序选择过程。在最小化归一化割方面,该算法的性能与谱方法相当。然而,与谱方法不同的是,所提出的算法可扩展到具有数百万个节点和边的图。该算法由三个部分组成,依次处理:贪婪凝聚层次聚类过程、模型顺序选择和局部细化。对于n个结点和O(n)条边的图,该算法的计算复杂度为O(nlog^2n),比谱方法的O(n^3)复杂度有较大的改进。在真实网络和合成网络上进行了实验,验证了该方法的可扩展性,模型阶数选择过程的有效性,以及该算法在最小化归一化割度量方面的性能。
---
英文标题:
《GANC: Greedy Agglomerative Normalized Cut》
---
作者:
Seyed Salim Tabatabaei and Mark Coates and Michael Rabbat
---
最新提交年份:
2011
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--

---
英文摘要:
  This paper describes a graph clustering algorithm that aims to minimize the normalized cut criterion and has a model order selection procedure. The performance of the proposed algorithm is comparable to spectral approaches in terms of minimizing normalized cut. However, unlike spectral approaches, the proposed algorithm scales to graphs with millions of nodes and edges. The algorithm consists of three components that are processed sequentially: a greedy agglomerative hierarchical clustering procedure, model order selection, and a local refinement.   For a graph of n nodes and O(n) edges, the computational complexity of the algorithm is O(n log^2 n), a major improvement over the O(n^3) complexity of spectral methods. Experiments are performed on real and synthetic networks to demonstrate the scalability of the proposed approach, the effectiveness of the model order selection procedure, and the performance of the proposed algorithm in terms of minimizing the normalized cut metric.
---
PDF链接:
https://arxiv.org/pdf/1105.0974
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:归一化 Sequentially Intelligence Hierarchical Presentation algorithm 进行 最小化 proposed 复杂度

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-7 10:29