楼主: mingdashike22
300 0

[计算机科学] 约束满足问题的自适应分支 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
73.8816
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
24862 点
帖子
4109
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
mingdashike22 在职认证  发表于 2022-3-9 11:00:24 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
CSPs的两种标准分支方案是D-路和2-路分支。尽管在理论上,后者可以比前者更有效,但缺乏显示这种差异的经验证据。为了研究这一点,我们首先在广泛的基准上对这两个分支方案进行了实验比较。实验结果验证了D-路和2-路分支之间的理论差距,因为我们从一个简单的变量排序启发式(如dom)转向更复杂的启发式(如dom/DDEG)。然而,也许令人惊讶的是,实验还表明,当使用像DOM/WDEG这样的最先进的变量排序启发式时,在许多情况下,d-way显然比2-Way分支更有效。基于这一观察,我们开发了两个通用的启发式,它们可以应用于搜索过程中的某些点,以决定是否遵循双向分支或与D-方向分支接近的限制性双向分支版本。这些启发式的应用得到了一个自适应分支方案。两种启发式算法的实例实验证明,在许多问题上,自适应分支搜索优于固定分支搜索。
---
英文标题:
《Adaptive Branching for Constraint Satisfaction Problems》
---
作者:
Thanasis Balafoutis and Kostas Stergiou
---
最新提交年份:
2010
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--

---
英文摘要:
  The two standard branching schemes for CSPs are d-way and 2-way branching. Although it has been shown that in theory the latter can be exponentially more effective than the former, there is a lack of empirical evidence showing such differences. To investigate this, we initially make an experimental comparison of the two branching schemes over a wide range of benchmarks. Experimental results verify the theoretical gap between d-way and 2-way branching as we move from a simple variable ordering heuristic like dom to more sophisticated ones like dom/ddeg. However, perhaps surprisingly, experiments also show that when state-of-the-art variable ordering heuristics like dom/wdeg are used then d-way can be clearly more efficient than 2-way branching in many cases. Motivated by this observation, we develop two generic heuristics that can be applied at certain points during search to decide whether 2-way branching or a restricted version of 2-way branching, which is close to d-way branching, will be followed. The application of these heuristics results in an adaptive branching scheme. Experiments with instantiations of the two generic heuristics confirm that search with adaptive branching outperforms search with a fixed branching scheme on a wide range of problems.
---
PDF链接:
https://arxiv.org/pdf/1008.0660
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Experimental satisfaction Intelligence Presentation Experiments 理论 实验 方案 显示 分支

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-7 05:05