摘要翻译:
本文在代数集的代数族中引入了与相容过滤相一致的blow-半代数平凡性的概念,作为实代数奇点的等性。给出一个定义在非奇异代数簇上的三维代数集的代数族,我们证明了参数代数集在连通Nash流形上存在一个有限的剖分,在这个剖分上,该族允许一个符合相容过滤的blow-semialgebridation。通过Artin-Mazur定理,我们对三维Nash集族也给出了类似的有限性结果。作为证明中论据的推论,我们得到了一个关于从二维欧氏空间到p-双欧氏空间的多项式映射的半代数类型的有限性定理。
---
英文标题:
《Finiteness theorem on Blow-semialgebraic triviality for a family of
3-dimensional algebraic sets》
---
作者:
Satoshi Koike
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this paper we introduce the notion of Blow-semialgebraic triviality consistent with a compatible filtration for an algebraic family of algebraic sets, as an equisingularity for real algebraic singularities. Given an algebraic family of 3-dimensional algebraic sets defined over a nonsingular algebraic variety, we show that there is a finite subdivision of the parameter algebraic set into connected Nash manifolds over which the family admits a Blow-semialgebraic trivialisation consistent with a compatible filtration. We show a similar result on finiteness also for a Nash family of 3-dimensional Nash sets through the Artin-Mazur theorem. As a corollary of the arguments in their proofs, we have a finiteness theorem on semialgebraic types of polynomial mappings from the 2-dimensional Euclidean space to the p-diemnsional Euclidean space.
---
PDF链接:
https://arxiv.org/pdf/0711.2862


雷达卡



京公网安备 11010802022788号







