楼主: mingdashike22
405 0

[数学] 分次模的Betti数与中的重数猜想 非科恩-麦考利案 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
73.8816
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
24862 点
帖子
4109
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
mingdashike22 在职认证  发表于 2022-3-17 16:10:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
利用Eisenbud和Schreyer的结果,证明了标准分次多项式环上分次模的任何Betti图都是具有纯分辨率的正线性组合Betti图。这意味着Herzog、Huneke和Srinivasan对于不一定是Cohen-Macaulay的模的多重性猜想。我们给出了纯图所跨越的单纯扇凸性的组合证明。
---
英文标题:
《Betti numbers of graded modules and the Multiplicity Conjecture in the
  non-Cohen-Macaulay case》
---
作者:
Mats Boij and Jonas Soderberg
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Commutative Algebra        交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  We use the results by Eisenbud and Schreyer to prove that any Betti diagram of a graded module over a standard graded polynomial ring is a positive linear combination Betti diagrams of modules with a pure resolution. This implies the Multiplicity Conjecture of Herzog, Huneke and Srinivasan for modules that are not necessarily Cohen-Macaulay. We give a combinatorial proof of the convexity of the simplicial fan spanned by the pure diagrams.
---
PDF链接:
https://arxiv.org/pdf/0803.1645
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Bet 麦考利 TTI mathematics combination Multiplicity Herzog 猜想 跨越 标准分

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-29 15:31