楼主: 可人4
384 0

[数学] 穿刺盘上的任何平束都有oper结构 [推广有奖]

  • 0关注
  • 2粉丝

会员

学术权威

76%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
49.0443
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24465 点
帖子
4070
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
可人4 在职认证  发表于 2022-3-17 19:55:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
我们证明了任何平坦的G-丛,其中G是复连通约化代数群,在穿孔盘上允许OPER的结构。这一结果对于ARXIV:Math/0508382中提出的局部几何Langlands对应关系具有重要意义。我们的证明使用了仿射Springer纤维的某些变形,这可能是独立感兴趣的。作为副产品,我们在这些变形的同调上构造了仿射Weyl群的表示,推广了Lusztig构造的表示。
---
英文标题:
《Any flat bundle on a punctured disc has an oper structure》
---
作者:
Edward Frenkel, Xinwen Zhu
---
最新提交年份:
2010
---
分类信息:

一级分类:Mathematics        数学
二级分类:Representation Theory        表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Quantum Algebra        量子代数
分类描述:Quantum groups, skein theories, operadic and diagrammatic algebra, quantum field theory
量子群,skein理论,运算代数和图解代数,量子场论
--

---
英文摘要:
  We prove that any flat G-bundle, where G is a complex connected reductive algebraic group, on the punctured disc admits the structure of an oper. This result is important in the local geometric Langlands correspondence proposed in arXiv:math/0508382. Our proof uses certain deformations of the affine Springer fibers which could be of independent interest. As a byproduct, we construct representations of affine Weyl groups on the homology of these deformations generalizing representations constructed by Lusztig.
---
PDF链接:
https://arxiv.org/pdf/0811.3186
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Presentation Generalizing Presentatio mathematics constructed structure 平束 Weyl disc representations

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-3 23:22