摘要翻译:
我们提出了一种旋转稀疏编码的算法以及一种利用可转向性的有效实现。稀疏编码(也称为字典学习)是图像处理中的一项重要技术,用于反问题、压缩和分析;然而,通常的公式不能捕捉图像结构的一个重要方面:图像是由出现在不同位置、方向和尺度上的构造块(例如边、线或点)形成的。稀疏编码问题可以重新表述,以显式地说明这些转换,但代价是增加计算量。本文提出了一种基于K-SVD的旋转型稀疏编码算法。然后,我们提出了一种方法来加速这些旋转,通过学习字典在一个可导向的基础上。我们在贴片编码和纹理分类上的实验表明,该算法具有足够的快速性,与标准稀疏编码相比具有良好的性能。
---
英文标题:
《Fast Rotational Sparse Coding》
---
作者:
Michael T. McCann and Vincent Andrearczyk and Michael Unser and Adrien
Depeursinge
---
最新提交年份:
2020
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Image and Video Processing 图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
一级分类:Computer Science 计算机科学
二级分类:Computer Vision and Pattern Recognition 计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
---
英文摘要:
We propose an algorithm for rotational sparse coding along with an efficient implementation using steerability. Sparse coding (also called dictionary learning) is an important technique in image processing, useful in inverse problems, compression, and analysis; however, the usual formulation fails to capture an important aspect of the structure of images: images are formed from building blocks, e.g., edges, lines, or points, that appear at different locations, orientations, and scales. The sparse coding problem can be reformulated to explicitly account for these transforms, at the cost of increased computation. In this work, we propose an algorithm for a rotational version of sparse coding that is based on K-SVD with additional rotation operations. We then propose a method to accelerate these rotations by learning the dictionary in a steerable basis. Our experiments on patch coding and texture classification demonstrate that the proposed algorithm is fast enough for practical use and compares favorably to standard sparse coding.
---
PDF链接:
https://arxiv.org/pdf/1806.04374


雷达卡



京公网安备 11010802022788号







