摘要翻译:
我们讨论曲线模空间的几何问题。本文给出了关于模空间Kodaira维数的Harris-Mumford定理的一个简短证明,它通过对M_g上重言式Koszul丛的简单研究,代替了在可容许覆盖的叠加上的计算。我们还对Verra最近关于M_g的uniration性的工作提出了一个精简的、独立的说明。最后,我们讨论了属22曲线的模空间是一般型的一个证明。为微分几何的调查而写。
---
英文标题:
《Birational aspects of the geometry of M_g》
---
作者:
Gavril Farkas
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We discuss topics on the geometry of the moduli space of curves. We present a short proof of the Harris-Mumford theorem on the Kodaira dimension of the moduli space which replaces the computations on the stack of admissible covers by a simple study of tautological Koszul bundles on M_g. We also present a streamlined self-contained account of Verra's recent work on the unirationality of M_g. Finally, we discuss a proof that the moduli space of curves of genus 22 is of general type. Written for Surveys in Differential Geometry.
---
PDF链接:
https://arxiv.org/pdf/0810.0702


雷达卡



京公网安备 11010802022788号







