摘要翻译:
VII类曲面的分类是复杂几何中一个非常困难的经典问题。专家们认为它是Enriques-Kodaira复杂曲面分类表中最重要的一个缺口。关于这个问题的标准猜想指出,任何具有$B_2>0$的极小VII类曲面都有$B_2$曲线。根据Kato,Nakamura和Dloussky/Oeljeklaus/Toma的结果,该猜想(如果成立)将完全解决这个分类问题。基于Donaldson理论的技巧,我们解释了一种新的方法来证明VII类曲面上曲线的存在性,并给出了用这种方法得到的最新结果。
---
英文标题:
《Gauge theoretical methods in the classification of non-Kaehlerian
surfaces》
---
作者:
Andrei Teleman
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Complex Variables 复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Geometric Topology 几何拓扑
分类描述:Manifolds, orbifolds, polyhedra, cell complexes, foliations, geometric structures
流形,轨道,多面体,细胞复合体,叶状,几何结构
--
---
英文摘要:
The classification of class VII surfaces is a very difficult classical problem in complex geometry. It is considered by experts to be the most important gap in the Enriques-Kodaira classification table for complex surfaces. The standard conjecture concerning this problem states that any minimal class VII surface with $b_2>0$ has $b_2$ curves. By the results of Kato, Nakamura and Dloussky/Oeljeklaus/Toma, this conjecture (if true) would solve this classification problem completely. We explain a new approach (based on techniques from Donaldson theory) to prove existence of curves on class VII surfaces, and we present recent results obtained using this approach.
---
PDF链接:
https://arxiv.org/pdf/0804.0557


雷达卡



京公网安备 11010802022788号







