楼主: 大多数88
315 0

[电气工程与系统科学] 基于距离平方迭代加权的鲁棒目标定位 最小二乘 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

67%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
70.8997
学术水平
0 点
热心指数
4 点
信用等级
0 点
经验
23294 点
帖子
3809
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
大多数88 在职认证  发表于 2022-3-22 12:30:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
本文研究了存在外部传感器时的目标定位问题。这个问题在实际应用中非常重要,因为在许多实际应用中,传感器可能会无意或恶意地报告无关的数据。利用平方距离测量的鲁棒统计技术对该问题进行了描述,并提出了两种不同的解决方法。第一种方法计算效率高;但理论上只保证了客观收敛性。另一方面,建立了第二种方法的全序列收敛性。为了充分利用这两种方法的优点,本文将它们结合起来,开发了一种混合算法,该算法提供了计算效率和理论保证。针对不同的模拟场景和真实场景对算法进行了评估。数值结果表明,在足够大的测量次数下,所提出的方法满足Cr'amer-Rao下界(CRLB)。当测量次数较少时,该位置估计器不能达到CRLB,但仍优于现有的几种定位方法。
---
英文标题:
《Robust Target Localization Based on Squared Range Iterative Reweighted
  Least Squares》
---
作者:
Alireza Zaeemzadeh, Mohsen Joneidi, Behzad Shahrasbi, Nazanin
  Rahnavard
---
最新提交年份:
2018
---
分类信息:

一级分类:Mathematics        数学
二级分类:Optimization and Control        优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  In this paper, the problem of target localization in the presence of outlying sensors is tackled. This problem is important in practice because in many real-world applications the sensors might report irrelevant data unintentionally or maliciously. The problem is formulated by applying robust statistics techniques on squared range measurements and two different approaches to solve the problem are proposed. The first approach is computationally efficient; however, only the objective convergence is guaranteed theoretically. On the other hand, the whole-sequence convergence of the second approach is established. To enjoy the benefit of both approaches, they are integrated to develop a hybrid algorithm that offers computational efficiency and theoretical guarantees. The algorithms are evaluated for different simulated and real-world scenarios. The numerical results show that the proposed methods meet the Cr'amer-Rao lower bound (CRLB) for a sufficiently large number of measurements. When the number of the measurements is small, the proposed position estimator does not achieve CRLB though it still outperforms several existing localization methods.
---
PDF链接:
https://arxiv.org/pdf/1802.05235
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:最小二乘 Applications localization Optimization Measurements sensors 应用 收敛性 方法 approach

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-11 01:37