摘要翻译:
我们展示了如何将计算具有学生T回报分布的VaR和CVaR的问题简化为求矩的解析函数。这使得对系统的风险特性的分析能够在风险函数的选择(例如VaR与CVaR)之间仔细地归因于风险函数的选择(例如VaR与CVaR);回报分布的选择(幂律尾与高斯)和事件频率的选择,用于风险评估。当资产收益服从标准多元T分布时,我们利用这一点为投资组合优化提供了一种简单的方法。这可以作为更一般的优化者的半分析验证工具,并用于短期内肥尾对资产配置影响的实际评估。
---
英文标题:
《Risk, VaR, CVaR and their associated Portfolio Optimizations when Asset
Returns have a Multivariate Student T Distribution》
---
作者:
William T. Shaw
---
最新提交年份:
2011
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
---
英文摘要:
We show how to reduce the problem of computing VaR and CVaR with Student T return distributions to evaluation of analytical functions of the moments. This allows an analysis of the risk properties of systems to be carefully attributed between choices of risk function (e.g. VaR vs CVaR); choice of return distribution (power law tail vs Gaussian) and choice of event frequency, for risk assessment. We exploit this to provide a simple method for portfolio optimization when the asset returns follow a standard multivariate T distribution. This may be used as a semi-analytical verification tool for more general optimizers, and for practical assessment of the impact of fat tails on asset allocation for shorter time horizons.
---
PDF链接:
https://arxiv.org/pdf/1102.5665


雷达卡



京公网安备 11010802022788号







