楼主: 能者818
488 0

[电气工程与系统科学] 增强编码语音的卷积神经网络 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
39.5640
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24699 点
帖子
4115
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2024-12-24

楼主
能者818 在职认证  发表于 2022-3-24 12:15:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
编码后的语音受到远端噪声、量化噪声和潜在传输错误的影响,增强编码语音是一项具有挑战性的任务。在本文中,我们提出了两种后处理方法,分别在时域和倒谱域应用卷积神经网络来增强编码语音,而不需要对编解码器进行任何修改。时域方法遵循端到端的方式,而倒位域方法使用带有倒位域特征的分析-综合。提出的后处理器在这两个领域的评估各种窄带和宽带语音编解码器在广泛的条件下。该后处理器对G.711,G.726,G.722和自适应多速率宽带编解码器(AMR-WB)的语音质量(PESQ)分别提高了0.25点、0.30点、0.82点和0.26点。在主观CCR听力测试中,G.711编码语音的后置处理器比ITU-T标准化后置滤波器的语音质量高0.36CMOS点,与传统G.711相比获得了1.77CMOS点的明显优先权,甚至优于未编码语音,具有统计学意义。提供了用于增强G.711编码语音的倒谱域方法的源代码。
---
英文标题:
《Convolutional Neural Networks to Enhance Coded Speech》
---
作者:
Ziyue Zhao, Huijun Liu, Tim Fingscheidt
---
最新提交年份:
2019
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Audio and Speech Processing        音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome.  Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval;  audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
一级分类:Computer Science        计算机科学
二级分类:Sound        声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--

---
英文摘要:
  Enhancing coded speech suffering from far-end acoustic background noise, quantization noise, and potentially transmission errors, is a challenging task. In this work we propose two postprocessing approaches applying convolutional neural networks (CNNs) either in the time domain or the cepstral domain to enhance the coded speech without any modification of the codecs. The time domain approach follows an end-to-end fashion, while the cepstral domain approach uses analysis-synthesis with cepstral domain features. The proposed postprocessors in both domains are evaluated for various narrowband and wideband speech codecs in a wide range of conditions. The proposed postprocessor improves speech quality (PESQ) by up to 0.25 MOS-LQO points for G.711, 0.30 points for G.726, 0.82 points for G.722, and 0.26 points for adaptive multirate wideband codec (AMR-WB). In a subjective CCR listening test, the proposed postprocessor on G.711-coded speech exceeds the speech quality of an ITU-T-standardized postfilter by 0.36 CMOS points, and obtains a clear preference of 1.77 CMOS points compared to legacy G.711, even better than uncoded speech with statistical significance. The source code for the cepstral domain approach to enhance G.711-coded speech is made available.
---
PDF链接:
https://arxiv.org/pdf/1806.09411
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:神经网络 神经网 Modification Segmentation Standardized 听力 语音 time 增强 测试

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-29 06:47