摘要翻译:
定义了光滑射影曲线上的准群格式$\Mathcal G$的概念,并给出了关于$\Mathcal G$-丛的叠加结构的四个猜想,推广了关于具有常数还原群的$G$-丛的已知结果。这些猜想涉及连通分量集、扭环群的仿射旗变型的一致化、Picard群以及占优线丛的全局截面空间。自从这篇论文的第一个版本流传以来,Heinloth[arxiv:0711.4450]已经证明了这些猜想的很大一部分。
---
英文标题:
《Some questions about $\mathcal G$-bundles on curves》
---
作者:
G. Pappas, M. Rapoport
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We define the notion of a parahoric group scheme $\mathcal G$ over a smooth projective curve, and formulate four conjectures on the structure of the stack of $\mathcal G$-bundles, which generalize to this case well-known results on $G$-bundles with $G$ a constant reductive group. The conjectures concern the set of connected components, the uniformization by affine flag varieties of twisted loop groups, the Picard groups, and the space of global sections of a dominant line bundle. Since a first version of this paper was circulated, Heinloth [arXiv:0711.4450] has proved a good part of these conjectures.
---
PDF链接:
https://arxiv.org/pdf/0808.3743


雷达卡



京公网安备 11010802022788号







