摘要翻译:
本文建立了具有特定边界曲线系统的实环面的Bar-Natan skein模与(n,n)Springer簇的同调之间的同构关系。结果建立在Khovanov的无交叉匹配和(n,n)Springer类的上同调的基础上。对于这种特殊的三流形和边界曲线系统,我们还给出了Bar-Natan skein模中的一个多重运算公式。
---
英文标题:
《The Bar-Natan skein module of the solid torus and the homology of (n,n)
Springer varieties》
---
作者:
Heather M. Russell
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Geometric Topology 几何拓扑
分类描述:Manifolds, orbifolds, polyhedra, cell complexes, foliations, geometric structures
流形,轨道,多面体,细胞复合体,叶状,几何结构
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
This paper establishes an isomorphism between the Bar-Natan skein module of the solid torus with a particular boundary curve system and the homology of the (n,n) Springer variety. The results build on Khovanov's work with crossingless matchings and the cohomology of the (n,n) Springer variety. We also give a formula for comultiplication in the Bar-Natan skein module for this specific three-manifold and boundary curve system.
---
PDF链接:
https://arxiv.org/pdf/0805.0286


雷达卡



京公网安备 11010802022788号







