摘要翻译:
在论文0704.4003中,Bondarko最近定义了权结构的概念,并证明了由Voevodsky、Suslin和Friedlander定义和研究的完美域k上的几何动因范畴$\dgm$是典型的具有权结构的。在此基础上,在边界动因避免权值的条件下,我们描述了一种构造光滑但可能非射影格式的内上同调的内在模体形式的方法。在这部作品的一个续集中,这种方法将应用于志村品种。
---
英文标题:
《Chow motives without projectivity》
---
作者:
J. Wildeshaus
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:K-Theory and Homology K-理论与同调
分类描述:Algebraic and topological K-theory, relations with topology, commutative algebra, and operator algebras
代数和拓扑K-理论,与拓扑的关系,交换代数和算子代数
--
---
英文摘要:
In paper 0704.4003, Bondarko recently defined the notion of weight structure, and proved that the category $\DgM$ of geometrical motives over a perfect field k, as defined and studied by Voevodsky, Suslin and Friedlander, is canonically equipped with such a structure. Building on this result, and under a condition on the weights avoided by the boundary motive, we describe a method to construct intrinsically in $\DgM$ a motivic version of interior cohomology of smooth, but possibly non-projective schemes. In a sequel to this work, this method will be applied to Shimura varieties.
---
PDF链接:
https://arxiv.org/pdf/0806.3380


雷达卡



京公网安备 11010802022788号







