摘要翻译:
本文从随机矩阵理论的Jacobi系综出发,指出任意数目的输入和输出导联$(N_1,N_2)$在混沌腔中的传输特征值密度和高阶相关函数是已知的。利用这一结果和一个简单的线性统计量,我们给出了形式为$<\lambda1^m>$对于$m>-n_1-n_2-1$和$\beta=2$的矩的精确的非扰动表达式,从而改进了文献中的已有结果。其次,在$\beta=2,4$的情况下,我们给出了平均密度和高阶相关函数的独立推导,它不使用正交多项式技术。这一结果可能对避免行列式的有效数值实现有关。
---
英文标题:
《Transmission Eigenvalue Densities and Moments in Chaotic Cavities from
Random Matrix Theory》
---
作者:
Pierpaolo Vivo, Edoardo Vivo
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Mesoscale and Nanoscale Physics 介观和纳米物理
分类描述:Semiconducting nanostructures: quantum dots, wires, and wells. Single electronics, spintronics, 2d electron gases, quantum Hall effect, nanotubes, graphene, plasmonic nanostructures
半导体纳米结构:量子点、线和阱。单电子学,自旋电子学,二维电子气,量子霍尔效应,纳米管,石墨烯,等离子纳米结构
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We point out that the transmission eigenvalue density and higher order correlation functions in chaotic cavities for an arbitrary number of incoming and outgoing leads $(N_1,N_2)$ are analytically known from the Jacobi ensemble of Random Matrix Theory. Using this result and a simple linear statistic, we give an exact and non-perturbative expression for moments of the form $<\lambda_1^m>$ for $m>-|N_1-N_2|-1$ and $\beta=2$, thus improving the existing results in the literature. Secondly, we offer an independent derivation of the average density and higher order correlation functions for $\beta=2,4$ which does not make use of the orthogonal polynomials technique. This result may be relevant for an efficient numerical implementation avoiding determinants.
---
PDF链接:
https://arxiv.org/pdf/801.3026


雷达卡



京公网安备 11010802022788号







