摘要翻译:
考虑一个代数变体$x$在一个基方案$s$和一个忠实的基更改$t\到s$上。给定$x$上相干束的有界导出范畴中的一个可容许子范畴$\ca$,我们构造了纤维积$x\times_sT$上相干束的有界导出范畴中的一个可容许子范畴,称为$\ca$的基变,其基变定理成立:如果给出$x$的有界导出范畴的半拓扑分解,则其分量的基变构成纤维积的有界导出范畴的半拓扑分解。作为中间步骤,我们构造了$x$上拟合束的无界导出范畴和$x$上完全复形范畴的半正交分解的相容系统。作为应用,我们证明了半三角分解的投影函子是核函子。
---
英文标题:
《Base change for semiorthogonal decompositions》
---
作者:
Alexander Kuznetsov
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Category Theory 范畴理论
分类描述:Enriched categories, topoi, abelian categories, monoidal categories, homological algebra
丰富范畴,topoi,abelian范畴,monoidal范畴,同调代数
--
---
英文摘要:
Consider an algebraic variety $X$ over a base scheme $S$ and a faithful base change $T \to S$. Given an admissible subcategory $\CA$ in the bounded derived category of coherent sheaves on $X$, we construct an admissible subcategory in the bounded derived category of coherent sheaves on the fiber product $X\times_S T$, called the base change of $\CA$, in such a way that the following base change theorem holds: if a semiorthogonal decomposition of the bounded derived category of $X$ is given then the base changes of its components form a semiorthogonal decomposition of the bounded derived category of the fiber product. As an intermediate step we construct a compatible system of semiorthogonal decompositions of the unbounded derived category of quasicoherent sheaves on $X$ and of the category of perfect complexes on $X$. As an application we prove that the projection functors of a semiorthogonal decomposition are kernel functors.
---
PDF链接:
https://arxiv.org/pdf/0711.1734


雷达卡



京公网安备 11010802022788号







