摘要翻译:
这个附录证明了玉米的普遍一致性。宾的一位博士论文考官(特别感谢来自伦敦大学皇家霍洛威的弗拉基米尔·沃夫克)提出玉米具有普适性,并提供引理1.6的草图证明,这是这个证明的关键。基于Gy\"Prfi et al.[2006]中的证明,我们由此证明了玉米的普遍一致性。注意,本附录中的符号遵循Gy\"Orfi et al.[2006]。[2006]。
---
英文标题:
《CORN: Correlation-Driven Nonparametric Learning Approach for Portfolio
Selection -- an Online Appendix》
---
作者:
Bin Li and Dingjiang Huang and Steven C.H. Hoi
---
最新提交年份:
2013
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
英文摘要:
This appendix proves CORN's universal consistency. One of Bin's PhD thesis examiner (Special thanks to Vladimir Vovk from Royal Holloway, University of London) suggested that CORN is universal and provided sketch proof of Lemma 1.6, which is the key of this proof. Based on the proof in Gy\"prfi et al. [2006], we thus prove CORN's universal consistency. Note that the notations in this appendix follows Gy\"orfi et al. [2006].
---
PDF链接:
https://arxiv.org/pdf/1306.1378


雷达卡



京公网安备 11010802022788号







