楼主: 可人4
537 0

[数学] 通用Thom-Whitney-a层的构造 奇异变体的泛函性与SARD型定理 [推广有奖]

  • 0关注
  • 2粉丝

会员

学术权威

76%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
49.0443
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24465 点
帖子
4070
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
可人4 在职认证  发表于 2022-4-7 22:00:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
{\bf构造。}对于孤立临界值为0的支配多项式映射{$f:k^n\到k^l$}($k$是特征为零的代数闭域),我们构造了一个闭的{\it丛}$g_f\子集t^{*}k^n$。我们将$G_F$限制在$F^{-1}(0)$中的$F$的临界点$sing(F)$上,并将$sing(F)$划分为具有常数维数的$G_F$纤维的点的{It'quasistrata'}。结果表明,当丛的纤维在准层的光滑点处与切空间正交时(例如当$L=1$时),在$F^{-1}(0)$附近存在T-W-a(Thom和Whitney-a)层。而且,只有当$S$对于{T-W-a}分层类是{\bf通用}时,后者才是准层的不可约分量$S$上的正交补,这意味着对于该类中的任何$\{S_J'\}_J$,$\sing(F)=\cup_J S'_J$,存在$S_J'$的分量$S'$,且$S\cap S'$在$S$和$S'$中都是开放和密集的。{\bf结果。}我们证明了只要$G_F$的所有纤维都是准层各自切空间的正交补,就存在仅有通用层的T-W-a分层,然后后者对$Sing(F)$的划分产生最粗的{It通用T-W-a分层}。其关键成分是我们的{bf奇异空间的Sard型定理},其中奇点被认为是非临界的,因为附近的非奇点是一致非临界的(例如,对于一个支配映射$F:X\到Z$意味着$F$的雅可比矩阵的$l\乘以l$次子的绝对值之和,其中$l=\dim(Z)$不仅不消失,而且用一个正常数与零分开)。
---
英文标题:
《Construction of universal Thom-Whitney-a stratifications, their
  functoriality and Sard-type Theorem for singular varieties》
---
作者:
D.Grigoriev, P.Milman
---
最新提交年份:
2009
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Differential Geometry        微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--

---
英文摘要:
  {\bf Construction.} For a dominating polynomial mapping {$F: K^n\to K^l$} with an isolated critical value at 0 ($K$ an algebraically closed field of characteristic zero) we construct a closed {\it bundle} $G_F \subset T^{*}K^n $. We restrict $ G_F $ over the critical points $Sing(F)$ of $ F$ in $ F^{-1}(0)$ and partition $Sing(F)$ into {\it 'quasistrata'} of points with the fibers of $G_F$ of constant dimension. It turns out that T-W-a (Thom and Whitney-a) stratifications 'near' $F^{-1}(0)$ exist iff the fibers of bundle $G_F$ are orthogonal to the tangent spaces at the smooth points of the quasistrata (e. g. when $ l=1$). Also, the latter are the orthogonal complements over an irreducible component $ S $ of a quasistratum only if $S $ is {\bf universal} for the class of {T-W-a} stratifications, meaning that for any $\{S_j'\}_j $ in the class, $ \Sing (F) = \cup_j S'_j $, there is a component $S' $ of an $ S_j' $ with $S\cap S'$ being open and dense in both $S $ and $ S' $.   {\bf Results.} We prove that T-W-a stratifications with only universal strata exist iff all fibers of $G_F$ are the orthogonal complements to the respective tangent spaces to the quasistrata, and then the partition of $\Sing(F)$ by the latter yields the coarsest {\it universal T-W-a stratification}.   The key ingredient is our version of {\bf Sard-type Theorem for singular spaces} in which a singular point is considered to be noncritical iff nonsingular points nearby are 'uniformly noncritical' (e. g. for a dominating map $ F: X \to Z $ meaning that the sum of the absolute values of the $l\times l$ minors of the Jacobian matrix of $ F $, where $ l = \dim (Z) $, not only does not vanish but, moreover, is separated from zero by a positive constant).
---
PDF链接:
https://arxiv.org/pdf/0811.1373
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Whitney SAR Hit Construction Differential 准层 开放 分层 代数闭域 Whitney

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-4 07:14