楼主: 能者818
448 0

[电气工程与系统科学] 干扰受限网络的分布式联合功率分配 协调学习 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
39.5040
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24699 点
帖子
4115
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2024-12-24

楼主
能者818 在职认证  发表于 2022-4-8 11:30:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
超密集网络的部署是满足5G数据速率需求的主要方法之一。然而,独立小基站的高密度会增加网络内部的干扰。为了避免这种干扰,需要开发自组织的方法来管理网络资源。本文提出了一种在干扰受限网络中基于多智能体Q学习的分布式功率分配算法。该方法通过简单的消息传递来协调SBSs之间的协作,以实现最优的联合功率分配。仿真结果表明了该方法在两用户情况下的最优性。
---
英文标题:
《Joint Power Allocation in Interference-Limited Networks via Distributed
  Coordinated Learning》
---
作者:
Roohollah Amiri, Hani Mehrpouyan, David Matolak, Maged Elkashlan
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  The deployment of ultra-dense networks is one of the main methods to meet the 5G data rate requirements. However, high density of independent small base stations (SBSs) will increase the interference within the network. To circumvent this interference, there is a need to develop self-organizing methods to manage the resources of the network. In this paper, we present a distributed power allocation algorithm based on multi-agent Q-learning in an interference-limited network. The proposed method leverages coordination through simple message passing between SBSs to achieve an optimal joint power allocation. Simulation results show the optimality of the proposed method for a two-user case.
---
PDF链接:
https://arxiv.org/pdf/1806.02449
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:分布式 Applications Optimization Coordination Requirements 满足 情况 分布式 interference 干扰

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-8 01:41