楼主: nandehutu2022
320 0

[数学] 三次曲面上的ACM束 [推广有奖]

  • 0关注
  • 5粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
69.2521
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
24246 点
帖子
4004
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2022-4-20

楼主
nandehutu2022 在职认证  发表于 2022-4-8 12:10:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
本文证明了在非奇异三次曲面$x\子集\MathBB{P}^3$上,对于每$R\geq2$,具有Chern类的秩$R$稳定向量丛的模空间$M^S_x(R;C_1,c_2)$为$C_1=RH$,$c_2=(3R^2-R)/2$,包含一个由ACM丛构成的非空光滑开子集,即无中间上同调的向量丛。本文所考虑的束对于相应模的生成元数是极值的(这些束称为Ulrich束),因此我们也证明了在$x$上任意高阶不可分解Ulrich束的存在性。
---
英文标题:
《ACM bundles on cubic surfaces》
---
作者:
Marta Casanellas and Robin Hartshorne
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Commutative Algebra        交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--

---
英文摘要:
  In this paper we prove that, for every $r \geq 2$, the moduli space $M^s_X(r;c_1,c_2)$ of rank $r$ stable vector bundles with Chern classes $c_1=rH$ and $c_2=(3r^2-r)/2$ on a nonsingular cubic surface $X \subset \mathbb{P}^3$ contains a nonempty smooth open subset formed by ACM bundles, i.e. vector bundles with no intermediate cohomology. The bundles we consider for this study are extremal for the number of generators of the corresponding module (these are known as Ulrich bundles), so we also prove the existence of indecomposable Ulrich bundles of arbitrarily high rank on $X$.
---
PDF链接:
https://arxiv.org/pdf/0801.3600
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:ACM intermediate mathematics Connections intermediat space 上同调 不可 三次曲面 分解

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-23 02:37