摘要翻译:
本文证明了在非奇异三次曲面$x\子集\MathBB{P}^3$上,对于每$R\geq2$,具有Chern类的秩$R$稳定向量丛的模空间$M^S_x(R;C_1,c_2)$为$C_1=RH$,$c_2=(3R^2-R)/2$,包含一个由ACM丛构成的非空光滑开子集,即无中间上同调的向量丛。本文所考虑的束对于相应模的生成元数是极值的(这些束称为Ulrich束),因此我们也证明了在$x$上任意高阶不可分解Ulrich束的存在性。
---
英文标题:
《ACM bundles on cubic surfaces》
---
作者:
Marta Casanellas and Robin Hartshorne
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
In this paper we prove that, for every $r \geq 2$, the moduli space $M^s_X(r;c_1,c_2)$ of rank $r$ stable vector bundles with Chern classes $c_1=rH$ and $c_2=(3r^2-r)/2$ on a nonsingular cubic surface $X \subset \mathbb{P}^3$ contains a nonempty smooth open subset formed by ACM bundles, i.e. vector bundles with no intermediate cohomology. The bundles we consider for this study are extremal for the number of generators of the corresponding module (these are known as Ulrich bundles), so we also prove the existence of indecomposable Ulrich bundles of arbitrarily high rank on $X$.
---
PDF链接:
https://arxiv.org/pdf/0801.3600


雷达卡



京公网安备 11010802022788号







