楼主: kedemingshi
222 0

[统计数据] 热平衡中的一维不可穿透的任意子。I.Anyonic Lenard公式的推广 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
89.2735
学术水平
0 点
热心指数
8 点
信用等级
0 点
经验
24665 点
帖子
4127
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
kedemingshi 在职认证  发表于 2022-4-8 14:00:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
利用任意子波函数与费米子波函数之间的映射,我们得到了不可穿透的一维任意子的约化密度矩阵(或等价的场的相关函数)与费米子约化密度矩阵的展开式。这是A.Lenard关于玻色子的结果对任意子统计量的推广。对于具有统计参数$\kappa$的不可穿透但其它自由的任意子,巨正则系综中的任意子约化密度矩阵表示为具有复数统计相关系数$\gamma=(1+e^{\pm i\pi\kappa})/\pi$的积分算子($1-\gamma\hat\theta_t$)的Fredholm子。对于$\kappa=0$,我们恢复了Lenard$\gamma=2/\pi$的bosonic情况。由于宇称不守恒,任意场相关子$\la\fad(x′)\fa(x)\ra$因符号$x′-x$而不同。
---
英文标题:
《One-Dimensional Impenetrable Anyons in Thermal Equilibrium. I. Anyonic
  Generalization of Lenard's Formula》
---
作者:
Ovidiu I. Patu, Vladimir E. Korepin, Dmitri V. Averin
---
最新提交年份:
2008
---
分类信息:

一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics        物理学
二级分类:Mathematical Physics        数学物理
分类描述:Articles in this category focus on areas of research that illustrate the application of mathematics to problems in physics, develop mathematical methods for such applications, or provide mathematically rigorous formulations of existing physical theories. Submissions to math-ph should be of interest to both physically oriented mathematicians and mathematically oriented physicists; submissions which are primarily of interest to theoretical physicists or to mathematicians should probably be directed to the respective physics/math categories
这一类别的文章集中在说明数学在物理问题中的应用的研究领域,为这类应用开发数学方法,或提供现有物理理论的数学严格公式。提交的数学-PH应该对物理方向的数学家和数学方向的物理学家都感兴趣;主要对理论物理学家或数学家感兴趣的投稿可能应该指向各自的物理/数学类别
--
一级分类:Mathematics        数学
二级分类:Mathematical Physics        数学物理
分类描述:math.MP is an alias for math-ph. Articles in this category focus on areas of research that illustrate the application of mathematics to problems in physics, develop mathematical methods for such applications, or provide mathematically rigorous formulations of existing physical theories. Submissions to math-ph should be of interest to both physically oriented mathematicians and mathematically oriented physicists; submissions which are primarily of interest to theoretical physicists or to mathematicians should probably be directed to the respective physics/math categories
math.mp是math-ph的别名。这一类别的文章集中在说明数学在物理问题中的应用的研究领域,为这类应用开发数学方法,或提供现有物理理论的数学严格公式。提交的数学-PH应该对物理方向的数学家和数学方向的物理学家都感兴趣;主要对理论物理学家或数学家感兴趣的投稿可能应该指向各自的物理/数学类别
--
一级分类:Physics        物理学
二级分类:Quantum Physics        量子物理学
分类描述:Description coming soon
描述即将到来
--

---
英文摘要:
  We have obtained an expansion of the reduced density matrices (or, equivalently, correlation functions of the fields) of impenetrable one-dimensional anyons in terms of the reduced density matrices of fermions using the mapping between anyon and fermion wavefunctions. This is the generalization to anyonic statistics of the result obtained by A. Lenard for bosons. In the case of impenetrable but otherwise free anyons with statistical parameter $\kappa$, the anyonic reduced density matrices in the grand canonical ensemble is expressed as Fredholm minors of the integral operator ($1-\gamma \hat \theta_T$) with complex statistics-dependent coefficient $\gamma=(1+e^{\pm i\pi\kappa})/ \pi$. For $\kappa=0$ we recover the bosonic case of Lenard $\gamma=2/\pi$. Due to nonconservation of parity, the anyonic field correlators $\la \fad(x')\fa(x)\ra$ are different depending on the sign of $x'-x$.
---
PDF链接:
https://arxiv.org/pdf/801.4397
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Any NIC ENA 热平衡 Mathematical 推广 的场 复数 函数 宇称

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-18 12:57